Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Indian J Med Res ; 159(2): 213-222, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38577860

RESUMO

BACKGROUND OBJECTIVES: Alcohol is one of most common aetiologies of cirrhosis and decompensated cirrhosis is linked to higher morbidity and death rates. This study looked at the outcomes and mortality associated risk variables of individuals with alcoholic cirrhosis who had hospitalization with their first episode of decompensation. METHODS: Individuals with alcoholic cirrhosis who were hospitalized with the first episode of decompensation [acute decompensation (AD) or acute-on-chronic liver failure (ACLF)] were included in the study and were prospectively followed up until death or 90 days, whichever was earlier. RESULTS: Of the 227 study participants analyzed, 167 (73.56%) and 60 (26.43%) participants presented as AD and ACLF, respectively. In the ACLF group, the mortality rate at 90 days was higher than in the AD group (48.3 vs 32.3%, P=0.02). In the AD group, participants who initially presented with ascites as opposed to variceal haemorrhage had a greater mortality rate at 90 days (36.4 vs 17.1%, P=0.041). The chronic liver failure-consortium AD score and the lactate-free Asian Pacific Association for the study of the Liver-ACLF research consortium score best-predicted mortality in individuals with AD and ACLF. INTERPRETATION CONCLUSIONS: There is significant heterogeneity in the type of decompensation in individuals with alcoholic cirrhosis. We observed significantly high mortality rate among alcoholic participants hospitalized with initial decompensation; deaths occurring in more than one-third of study participants within 90 days.


Assuntos
Insuficiência Hepática Crônica Agudizada , Varizes Esofágicas e Gástricas , Humanos , Cirrose Hepática Alcoólica/complicações , Cirrose Hepática Alcoólica/epidemiologia , Estudos Prospectivos , Hemorragia Gastrointestinal , Cirrose Hepática/complicações , Cirrose Hepática/epidemiologia , Insuficiência Hepática Crônica Agudizada/epidemiologia , Insuficiência Hepática Crônica Agudizada/terapia , Prognóstico
2.
Transl Vis Sci Technol ; 13(4): 20, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38618893

RESUMO

Purpose: The purpose of this study was to assess the current use and reliability of artificial intelligence (AI)-based algorithms for analyzing cataract surgery videos. Methods: A systematic review of the literature about intra-operative analysis of cataract surgery videos with machine learning techniques was performed. Cataract diagnosis and detection algorithms were excluded. Resulting algorithms were compared, descriptively analyzed, and metrics summarized or visually reported. The reproducibility and reliability of the methods and results were assessed using a modified version of the Medical Image Computing and Computer-Assisted (MICCAI) checklist. Results: Thirty-eight of the 550 screened studies were included, 20 addressed the challenge of instrument detection or tracking, 9 focused on phase discrimination, and 8 predicted skill and complications. Instrument detection achieves an area under the receiver operator characteristic curve (ROC AUC) between 0.976 and 0.998, instrument tracking an mAP between 0.685 and 0.929, phase recognition an ROC AUC between 0.773 and 0.990, and complications or surgical skill performs with an ROC AUC between 0.570 and 0.970. Conclusions: The studies showed a wide variation in quality and pose a challenge regarding replication due to a small number of public datasets (none for manual small incision cataract surgery) and seldom published source code. There is no standard for reported outcome metrics and validation of the models on external datasets is rare making comparisons difficult. The data suggests that tracking of instruments and phase detection work well but surgical skill and complication recognition remains a challenge for deep learning. Translational Relevance: This overview of cataract surgery analysis with AI models provides translational value for improving training of the clinician by identifying successes and challenges.


Assuntos
Inteligência Artificial , Catarata , Humanos , Reprodutibilidade dos Testes , Algoritmos , Software , Catarata/diagnóstico
3.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464060

RESUMO

Vascular inflammation critically regulates endothelial cell (EC) pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulation of lysosomal activity and cholesterol metabolism have known inflammatory roles in disease, but their relevance to PAH is unclear. In human pulmonary arterial ECs and in PAH, we found that inflammatory cytokine induction of the nuclear receptor coactivator 7 (NCOA7) both preserved lysosomal acidification and served as a homeostatic brake to constrain EC immunoactivation. Conversely, NCOA7 deficiency promoted lysosomal dysfunction and proinflammatory oxysterol/bile acid generation that, in turn, contributed to EC pathophenotypes. In vivo, mice deficient for Ncoa7 or exposed to the inflammatory bile acid 7α-hydroxy-3-oxo-4-cholestenoic acid (7HOCA) displayed worsened PAH. Emphasizing this mechanism in human PAH, an unbiased, metabolome-wide association study (N=2,756) identified a plasma signature of the same NCOA7-dependent oxysterols/bile acids associated with PAH mortality (P<1.1x10-6). Supporting a genetic predisposition to NCOA7 deficiency, in genome-edited, stem cell-derived ECs, the common variant intronic SNP rs11154337 in NCOA7 regulated NCOA7 expression, lysosomal activity, oxysterol/bile acid production, and EC immunoactivation. Correspondingly, SNP rs11154337 was associated with PAH severity via six-minute walk distance and mortality in discovery (N=93, P=0.0250; HR=0.44, 95% CI [0.21-0.90]) and validation (N=630, P=2x10-4; HR=0.49, 95% CI [0.34-0.71]) cohorts. Finally, utilizing computational modeling of small molecule binding to NCOA7, we predicted and synthesized a novel activator of NCOA7 that prevented EC immunoactivation and reversed indices of rodent PAH. In summary, we have established a genetic and metabolic paradigm and a novel therapeutic agent that links lysosomal biology as well as oxysterol and bile acid processes to EC inflammation and PAH pathobiology. This paradigm carries broad implications for diagnostic and therapeutic development in PAH and in other conditions dependent upon acquired and innate immune regulation of vascular disease.

5.
Sci Adv ; 10(6): eadj5661, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335297

RESUMO

Hypoxia-inducible factor pathway genes are linked to adaptation in both human and nonhuman highland species. EPAS1, a notable target of hypoxia adaptation, is associated with relatively lower hemoglobin concentration in Tibetans. We provide evidence for an association between an adaptive EPAS1 variant (rs570553380) and the same phenotype of relatively low hematocrit in Andean highlanders. This Andean-specific missense variant is present at a modest frequency in Andeans and absent in other human populations and vertebrate species except the coelacanth. CRISPR-base-edited human cells with this variant exhibit shifts in hypoxia-regulated gene expression, while metabolomic analyses reveal both genotype and phenotype associations and validation in a lowland population. Although this genocopy of relatively lower hematocrit in Andean highlanders parallels well-replicated findings in Tibetans, it likely involves distinct pathway responses based on a protein-coding versus noncoding variants, respectively. These findings illuminate how unique variants at EPAS1 contribute to the same phenotype in Tibetans and a subset of Andean highlanders despite distinct evolutionary trajectories.


Assuntos
Adaptação Fisiológica , Altitude , Hematócrito , População da América do Sul , Humanos , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , População do Leste Asiático , Hipóxia/genética , Hipóxia/metabolismo , Mutação de Sentido Incorreto/genética , População da América do Sul/genética
6.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328113

RESUMO

Pulmonary arterial hypertension (PAH) is a rare and fatal vascular disease with heterogeneous clinical manifestations. To date, molecular determinants underlying the development of PAH and related outcomes remain poorly understood. Herein, we identify pulmonary primary oxysterol and bile acid synthesis (PPOBAS) as a previously unrecognized pathway central to PAH pathophysiology. Mass spectrometry analysis of 2,756 individuals across five independent studies revealed 51 distinct circulating metabolites that predicted PAH-related mortality and were enriched within the PPOBAS pathway. Across independent single-center PAH studies, PPOBAS pathway metabolites were also associated with multiple cardiopulmonary measures of PAH-specific pathophysiology. Furthermore, PPOBAS metabolites were found to be increased in human and rodent PAH lung tissue and specifically produced by pulmonary endothelial cells, consistent with pulmonary origin. Finally, a poly-metabolite risk score comprising 13 PPOBAS molecules was found to not only predict PAH-related mortality but also outperform current clinical risk scores. This work identifies PPOBAS as specifically altered within PAH and establishes needed prognostic biomarkers for guiding therapy in PAH.

7.
Cureus ; 16(1): e51874, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38327929

RESUMO

Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and mortality, necessitating innovative approaches for accurate risk assessment and prognosis. This review explores the evolving role of biomarkers in advancing cardiovascular risk evaluation and prognostication. Utilizing cardiac biomarkers that represent diverse pathophysiological pathways has the potential to enhance risk stratification for CVD. We delve into the intricate molecular signatures indicative of cardiovascular health, focusing on established biomarkers such as troponins, natriuretic peptides, and lipid profiles while also examining emerging candidates like microRNAs and inflammatory markers. This review provides a holistic perspective on the current landscape of cardiovascular biomarkers, offering insights into their applications in risk assessment and prognosis. In evaluating the risk and prognosis of heart failure (HF), the measurement of natriuretic peptides (B-type natriuretic peptide [BNP] or N-terminal pro-B-type natriuretic peptide [NT-proBNP]) or markers of myocardial injury (cardiac troponin I [TnI] or T [TnT]) has demonstrated utility. By elucidating the synergistic interplay between traditional markers and cutting-edge technologies, this work aims to guide future research endeavors and clinical practices, ultimately contributing to more effective strategies for risk assessment and prognosis of cardiovascular disease.

9.
Arterioscler Thromb Vasc Biol ; 44(2): 477-487, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37970720

RESUMO

BACKGROUND: Dyslipidemia is treated effectively with statins, but treatment has the potential to induce new-onset type-2 diabetes. Gut microbiota may contribute to this outcome variability. We assessed the associations of gut microbiota diversity and composition with statins. Bacterial associations with statin-associated new-onset type-2 diabetes (T2D) risk were also prospectively evaluated. METHODS: We examined shallow-shotgun-sequenced fecal samples from 5755 individuals in the FINRISK-2002 population cohort with a 17+-year-long register-based follow-up. Alpha-diversity was quantified using Shannon index and beta-diversity with Aitchison distance. Species-specific differential abundances were analyzed using general multivariate regression. Prospective associations were assessed with Cox regression. Applicable results were validated using gradient boosting. RESULTS: Statin use associated with differing taxonomic composition (R2, 0.02%; q=0.02) and 13 differentially abundant species in fully adjusted models (MaAsLin; q<0.05). The strongest positive association was with Clostridium sartagoforme (ß=0.37; SE=0.13; q=0.02) and the strongest negative association with Bacteroides cellulosilyticus (ß=-0.31; SE=0.11; q=0.02). Twenty-five microbial features had significant associations with incident T2D in statin users, of which only Bacteroides vulgatus (HR, 1.286 [1.136-1.457]; q=0.03) was consistent regardless of model adjustment. Finally, higher statin-associated T2D risk was seen with [Ruminococcus] torques (ΔHRstatins, +0.11; q=0.03), Blautia obeum (ΔHRstatins, +0.06; q=0.01), Blautia sp. KLE 1732 (ΔHRstatins, +0.05; q=0.01), and beta-diversity principal component 1 (ΔHRstatin, +0.07; q=0.03) but only when adjusting for demographic covariates. CONCLUSIONS: Statin users have compositionally differing microbiotas from nonusers. The human gut microbiota is associated with incident T2D risk in statin users and possibly has additive effects on statin-associated new-onset T2D risk.


Assuntos
Diabetes Mellitus Tipo 2 , Dislipidemias , Microbioma Gastrointestinal , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Estudos Transversais , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Dislipidemias/diagnóstico , Dislipidemias/tratamento farmacológico , Dislipidemias/epidemiologia
10.
Nat Commun ; 14(1): 7557, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985769

RESUMO

Systemic inflammation has been implicated in the pathobiology of heart failure with preserved ejection fraction (HFpEF). Here, we examine the association of upstream mediators of inflammation as ascertained by fatty-acid derived eicosanoid and eicosanoid-related metabolites with HFpEF status and exercise manifestations of HFpEF. Among 510 participants with chronic dyspnea and preserved LVEF who underwent invasive cardiopulmonary exercise testing, we find that 70 of 890 eicosanoid and related metabolites are associated with HFpEF status, including 17 named and 53 putative eicosanoids (FDR q-value < 0.1). Prostaglandin (15R-PGF2α, 11ß-dhk-PGF2α) and linoleic acid derivatives (12,13 EpOME) are associated with greater odds of HFpEF, while epoxides (8(9)-EpETE), docosanoids (13,14-DiHDPA), and oxylipins (12-OPDA) are associated with lower odds of HFpEF. Among 70 metabolites, 18 are associated with future development of heart failure in the community. Pro- and anti-inflammatory eicosanoid and related metabolites may contribute to the pathogenesis of HFpEF and serve as potential targets for intervention.


Assuntos
Insuficiência Cardíaca , Humanos , Volume Sistólico , Dispneia , Teste de Esforço , Eicosanoides , Tolerância ao Exercício
11.
J Orthop Case Rep ; 13(11): 42-48, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38025355

RESUMO

Introduction: Osteochondroma is the most common benign bone tumor where a chondrogenic lesion is derived from aberrant cartilage from the perichondral ring. Although it commonly arises from the growing ends of long bones, less commonly, it may arise from the scapula, pelvis, or vertebra. Case Report: We encountered a 16-year-old male patient with a painless left pelvic solid mass for 3 years, which was suggestive of osteochondroma on X-ray and magnetic resonance imaging findings. Besides cosmetic issues, the main indication for surgery was the constant discomfort in wearing pants/shorts/belts. He underwent en bloc excision followed by a biopsy of the surgical specimen by two independent histopathologists confirming the tumor to be osteochondroma. He was followed up for 2 years with no signs of post-operative complications or recurrence. This case represents one of the very few reported so affecting the iliac wing, where the excision was performed before skeletal maturation. We also performed a review of the current literature on iliac wing osteochondroma to understand the tumor better, identify gaps in current knowledge, and suggest areas for future research. Conclusion: Since one of the differential diagnoses includes secondary chondrosarcoma, which could be a rare progression of osteochondroma, early recognition and comprehensive evaluation of such unusual cases needs to be dealt with a high index of suspicion to avoid misdiagnosis and to provide effective treatment.

13.
Eur Respir J ; 62(4)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37857430

RESUMO

BACKGROUND: Eicosanoids are bioactive lipids that regulate systemic inflammation and exert vasoactive effects. Specific eicosanoid metabolites have previously been associated with pulmonary hypertension (PH), yet their role remains incompletely understood. METHODS: We studied 482 participants with chronic dyspnoea who underwent clinically indicated cardiopulmonary exercise testing (CPET) with invasive haemodynamic monitoring. We performed comprehensive profiling of 888 eicosanoids and eicosanoid-related metabolites using directed non-targeted mass spectrometry, and examined associations with PH (mean pulmonary arterial pressure (mPAP) >20 mmHg), PH subtypes and physiological correlates, including transpulmonary metabolite gradients. RESULTS: Among 482 participants (mean±sd age 56±16 years, 62% women), 200 had rest PH. We found 48 eicosanoids and eicosanoid-related metabolites that were associated with PH. Specifically, prostaglandin (11ß-dhk-PGF2α), linoleic acid (12,13-EpOME) and arachidonic acid derivatives (11,12-DiHETrE) were associated with higher odds of PH (false discovery rate q<0.05 for all). By contrast, epoxide (8(9)-EpETE), α-linolenic acid (13(S)-HOTrE(γ)) and lipokine derivatives (12,13-DiHOME) were associated with lower odds. Among PH-related eicosanoids, 14 showed differential transpulmonary metabolite gradients, with directionality suggesting that metabolites associated with lower odds of PH also displayed pulmonary artery uptake. In individuals with exercise PH, eicosanoid profiles were intermediate between no PH and rest PH, with six metabolites that differed between rest and exercise PH. CONCLUSIONS: Our findings highlight the role of specific eicosanoids, including linoleic acid and epoxide derivatives, as potential regulators of inflammation in PH. Of note, physiological correlates, including transpulmonary metabolite gradients, may prioritise future studies focused on eicosanoid-related pathways as important contributors to PH pathogenesis.


Assuntos
Hipertensão Pulmonar , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Ácido Linoleico , Eicosanoides/metabolismo , Inflamação , Compostos de Epóxi
14.
Front Cardiovasc Med ; 10: 1229130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680562

RESUMO

Introduction: Long-chain omega-3 polyunsaturated fatty acids (OM3 PUFA) are commonly used for cardiovascular disease prevention. High-dose eicosapentaenoic acid (EPA) is reported to reduce major adverse cardiovascular events (MACE); however, a combined EPA and docosahexaenoic acid (DHA) supplementation has not been proven to do so. This study aimed to evaluate the potential interaction between EPA and DHA levels on long-term MACE. Methods: We studied a cohort of 987 randomly selected subjects enrolled in the INSPIRE biobank registry who underwent coronary angiography. We used rapid throughput liquid chromatography-mass spectrometry to quantify the EPA and DHA plasma levels and examined their impact unadjusted, adjusted for one another, and fully adjusted for comorbidities, EPA + DHA, and the EPA/DHA ratio on long-term (10-year) MACE (all-cause death, myocardial infarction, stroke, heart failure hospitalization). Results: The average subject age was 61.5 ± 12.2 years, 57% were male, 41% were obese, 42% had severe coronary artery disease (CAD), and 311 (31.5%) had a MACE. The 10-year MACE unadjusted hazard ratio (HR) for the highest (fourth) vs. lowest (first) quartile (Q) of EPA was HR = 0.48 (95% CI: 0.35, 0.67). The adjustment for DHA changed the HR to 0.30 (CI: 0.19, 0.49), and an additional adjustment for baseline differences changed the HR to 0.36 (CI: 0.22, 0.58). Conversely, unadjusted DHA did not significantly predict MACE, but adjustment for EPA resulted in a 1.81-fold higher risk of MACE (CI: 1.14, 2.90) for Q4 vs. Q1. However, after the adjustment for baseline differences, the risk of MACE was not significant for DHA (HR = 1.37; CI: 0.85, 2.20). An EPA/DHA ratio ≥1 resulted in a lower rate of 10-year MACE outcomes (27% vs. 37%, adjusted p-value = 0.013). Conclusions: Higher levels of EPA, but not DHA, are associated with a lower risk of MACE. When combined with EPA, higher DHA blunts the benefit of EPA and is associated with a higher risk of MACE in the presence of low EPA. These findings can help explain the discrepant results of EPA-only and EPA/DHA mixed clinical supplementation trials.

15.
Nature ; 621(7977): 179-187, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648857

RESUMO

Tissue resident memory CD8+ T (TRM) cells offer rapid and long-term protection at sites of reinfection1. Tumour-infiltrating lymphocytes with characteristics of TRM cells maintain enhanced effector functions, predict responses to immunotherapy and accompany better prognoses2,3. Thus, an improved understanding of the metabolic strategies that enable tissue residency by T cells could inform new approaches to empower immune responses in tissues and solid tumours. Here, to systematically define the basis for the metabolic reprogramming supporting TRM cell differentiation, survival and function, we leveraged in vivo functional genomics, untargeted metabolomics and transcriptomics of virus-specific memory CD8+ T cell populations. We found that memory CD8+ T cells deployed a range of adaptations to tissue residency, including reliance on non-steroidal products of the mevalonate-cholesterol pathway, such as coenzyme Q, driven by increased activity of the transcription factor SREBP2. This metabolic adaptation was most pronounced in the small intestine, where TRM cells interface with dietary cholesterol and maintain a heightened state of activation4, and was shared by functional tumour-infiltrating lymphocytes in diverse tumour types in mice and humans. Enforcing synthesis of coenzyme Q through deletion of Fdft1 or overexpression of PDSS2 promoted mitochondrial respiration, memory T cell formation following viral infection and enhanced antitumour immunity. In sum, through a systematic exploration of TRM cell metabolism, we reveal how these programs can be leveraged to fuel memory CD8+ T cell formation in the context of acute infections and enhance antitumour immunity.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Neoplasias , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Respiração Celular , Colesterol/metabolismo , Colesterol/farmacologia , Memória Imunológica , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Metabolômica , Ácido Mevalônico/metabolismo , Neoplasias/imunologia , Ubiquinona/metabolismo , Viroses/imunologia , Vírus/imunologia , Mitocôndrias/metabolismo
16.
Elife ; 122023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606250

RESUMO

Biguanides, including the world's most prescribed drug for type 2 diabetes, metformin, not only lower blood sugar, but also promote longevity in preclinical models. Epidemiologic studies in humans parallel these findings, indicating favorable effects of metformin on longevity and on reducing the incidence and morbidity associated with aging-related diseases. Despite this promise, the full spectrum of molecular effectors responsible for these health benefits remains elusive. Through unbiased screening in Caenorhabditis elegans, we uncovered a role for genes necessary for ether lipid biosynthesis in the favorable effects of biguanides. We demonstrate that biguanides prompt lifespan extension by stimulating ether lipid biogenesis. Loss of the ether lipid biosynthetic machinery also mitigates lifespan extension attributable to dietary restriction, target of rapamycin (TOR) inhibition, and mitochondrial electron transport chain inhibition. A possible mechanistic explanation for this finding is that ether lipids are required for activation of longevity-promoting, metabolic stress defenses downstream of the conserved transcription factor skn-1/Nrf. In alignment with these findings, overexpression of a single, key, ether lipid biosynthetic enzyme, fard-1/FAR1, is sufficient to promote lifespan extension. These findings illuminate the ether lipid biosynthetic machinery as a novel therapeutic target to promote healthy aging.


Metformin is the drug most prescribed to treat type 2 diabetes around the world and has been in clinical use since 1950. The drug belongs to a family of compounds known as biguanides which reduce blood sugar, making them an effective treatment against type 2 diabetes. More recently, biguanides have been found to have other health benefits, including limiting the growth of various cancer cells and improving the lifespan and long-term health of several model organisms. Epidemiologic studies also suggest that metformin may increase the lifespan of humans and reduce the incidence of age-related illnesses such as cardiovascular disease, cancer and dementia. Given the safety and effectiveness of metformin, understanding how it exerts these desirable effects may allow scientists to discover new mechanisms to promote healthy aging. The roundworm Caenorhabditis elegans is an ideal organism for studying the lifespan-extending effects of metformin. It has an average lifespan of two weeks, a genome that is relatively easy to manipulate, and a transparent body that enables scientists to observe cellular and molecular events in living worms. To discover the genes that enable metformin's lifespan-extending properties, Cedillo, Ahsan et al. systematically switched off the expression of about 1,000 genes involved in C. elegans metabolism. They then screened for genes which impaired the action of biguanides when inactivated. This ultimately led to the identification of a set of genes involved in promoting a longer lifespan. Cedillo, Ahsan et al. then evaluated how these genes impacted other well-described pathways involved in longevity and stress responses. The analysis indicated that a biguanide drug called phenformin (which is similar to metformin) increases the synthesis of ether lipids, a class of fats that are critical components of cellular membranes. Indeed, genetically mutating the three major enzymes required for ether lipid production stopped the biguanide from extending the worms' lifespans. Critically, inactivating these genes also prevented lifespan extension through other known strategies, such as dietary restriction and inhibiting the cellular organelle responsible for producing energy. Cedillo, Ahsan et al. also showed that increasing ether lipid production alters the activity of a well-known longevity and stress response factor called SKN-1, and this change alone is enough to extend the lifespan of worms. These findings suggest that promoting the production of ether lipids could lead to healthier aging. However, further studies, including clinical trials, will be required to determine whether this is a viable approach to promote longevity and health in humans.


Assuntos
Antimaláricos , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Animais , Caenorhabditis elegans/genética , Longevidade , Etil-Éteres , Éteres , Lipídeos
17.
Sci Rep ; 13(1): 12526, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532697

RESUMO

Survival outcomes for patients with neuroblastoma vary markedly and reliable prognostic markers and risk stratification tools are lacking. We sought to identify and validate a transcriptomic signature capable of predicting risk of mortality in patients with neuroblastoma. The TARGET NBL dataset (n = 243) was used to develop the model and two independent cohorts, E-MTAB-179 (n = 478) and GSE85047 (n = 240) were used as validation sets. EFS was the primary outcome and OS was the secondary outcome of interest for all analysis. We identified a 21-gene signature capable of stratifying neuroblastoma patients into high and low risk groups in the E-MTAB-179 (HR 5.87 [3.83-9.01], p < 0.0001, 5 year AUC 0.827) and GSE85047 (HR 3.74 [2.36-5.92], p < 0.0001, 5 year AUC 0.815) validation cohorts. Moreover, the signature remained independent of known clinicopathological variables, and remained prognostic within clinically important subgroups. Further, the signature was effectively incorporated into a risk model with clinicopathological variables to improve prognostic performance across validation cohorts (Pooled Validation HR 6.93 [4.89-9.83], p < 0.0001, 5 year AUC 0.839). Similar prognostic utility was also demonstrated with OS. The identified signature is a robust independent predictor of EFS and OS outcomes in neuroblastoma patients and can be combined with clinically utilized clinicopathological variables to improve prognostic performance.


Assuntos
Perfilação da Expressão Gênica , Neuroblastoma , Humanos , Prognóstico , Transcriptoma , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Biomarcadores Tumorais/genética
18.
Metabolites ; 13(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37512509

RESUMO

High-dimensional metabolomics analyses may identify convergent and divergent markers, potentially representing aligned or orthogonal disease pathways that underly conditions such as pulmonary arterial hypertension (PAH). Using a comprehensive PAH metabolomics dataset, we applied six different conventional and statistical learning techniques to identify analytes associated with key outcomes and compared the results. We found that certain conventional techniques, such as Bonferroni/FDR correction, prioritized metabolites that tended to be highly intercorrelated. Statistical learning techniques generally agreed with conventional techniques on the top-ranked metabolites, but were also more inclusive of different metabolite groups. In particular, conventional methods prioritized sterol and oxylipin metabolites in relation to idiopathic versus non-idiopathic PAH, whereas statistical learning methods tended to prioritize eicosanoid, bile acid, fatty acid, and fatty acyl ester metabolites. Our findings demonstrate how conventional and statistical learning techniques can offer both concordant or discordant results. In the case of a rare yet morbid condition, such as PAH, convergent metabolites may reflect common pathways to shared disease outcomes whereas divergent metabolites could signal either distinct etiologic mechanisms, different sub-phenotypes, or varying stages of disease progression. Notwithstanding the need to investigate the mechanisms underlying the observed results, our main findings suggest that a multi-method approach to statistical analyses of high-dimensional human metabolomics datasets could effectively broaden the scientific yield from a given study design.

19.
Commun Biol ; 6(1): 792, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524825

RESUMO

Eicosanoids are biologically active derivatives of polyunsaturated fatty acids with broad relevance to health and disease. We report a genome-wide association study in 8406 participants of the Atherosclerosis Risk in Communities Study, identifying 41 loci associated with 92 eicosanoids and related metabolites. These findings highlight loci required for eicosanoid biosynthesis, including FADS1-3, ELOVL2, and numerous CYP450 loci. In addition, significant associations implicate a range of non-oxidative lipid metabolic processes in eicosanoid regulation, including at PKD2L1/SCD and several loci involved in fatty acyl-CoA metabolism. Further, our findings highlight select clearance mechanisms, for example, through the hepatic transporter encoded by SLCO1B1. Finally, we identify eicosanoids associated with aspirin and non-steroidal anti-inflammatory drug use and demonstrate the substantial impact of genetic variants even for medication-associated eicosanoids. These findings shed light on both known and unknown aspects of eicosanoid metabolism and motivate interest in several gene-eicosanoid associations as potential functional participants in human disease.


Assuntos
Aterosclerose , Estudo de Associação Genômica Ampla , Humanos , Eicosanoides/metabolismo , Ácidos Graxos Insaturados , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado , Receptores de Superfície Celular/metabolismo , Canais de Cálcio
20.
Nat Biotechnol ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500913

RESUMO

Studies using 16S rRNA and shotgun metagenomics typically yield different results, usually attributed to PCR amplification biases. We introduce Greengenes2, a reference tree that unifies genomic and 16S rRNA databases in a consistent, integrated resource. By inserting sequences into a whole-genome phylogeny, we show that 16S rRNA and shotgun metagenomic data generated from the same samples agree in principal coordinates space, taxonomy and phenotype effect size when analyzed with the same tree.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...